Collaborative Combination of Neuron-Linguistic Classifiers for Large Arabic Word vocabulary Recognition
نویسندگان
چکیده
Most of the actual research in writing recognition focuses on speci ̄c applications where the vocabulary is relatively small. Many applications can be opened up when handling with large vocabulary. In this paper, we studied the classi ̄er collaboration interest for the recognition of a large vocabulary of arabic words. The proposed approach is based on three classi ̄ers, named Transparent Neuronal Networks (TNN), which exploit the morphological aspect of the Arabic word and collaborate for a better word recognition. We focused on decomposable words which are derived from healthy tri-consonantal roots and easy to proof the decomposition. To perform word recognition, the system extracts a set of global structural features. Then it learns and recognizes roots, schemes and conjugation elements that compose the word. To help the recognition, some local perceptual information is used in case of ambiguities. This interaction between global recognition and local checking makes easier the recognition of complex scripts as Arabic. Several experiments have been performed using a vocabulary of 5757 words, organized in a corpus of more than 17 200 samples. In order to validate our approach and to compare the proposed system with systems reported in ICDAR 2011 competition, extensive experiments were conducted using the Arabic Printed Text Image (APTI) database. The best recognition performances achieved by our system have shown very promising results.
منابع مشابه
Combination of multiple classifiers for handwritten word recognition
Because of large shape variations in human handwriting, recognition accuracy of cursive handwritten word is hardly satisfying using a single classifier. In this paper we introduce a framework to combine results of multiple classifiers and present an intuitive run-time weighted opinion pool (RWOP) combination approach for recognizing cursive handwritten words with a large size vocabulary. The in...
متن کاملتشخیص دستنوشتۀ برخط فارسی با استفاده از مدل زبانی و کاهش قوانین نگارش کاربر
The Joint-up, cursive form of Persian words and immense variety of its scripts, also different figures of Persian letters depending on their sitting positions in the words, have turned the Persian handwritings recognition to an intense challenge. The major obstacle of the most often recognition ways, is their inattention to sentence contexture which causes utilizing of a word with correct appea...
متن کاملAltecOnDB: A Large-Vocabulary Arabic Online Handwriting Recognition Database
Arabic is a semitic language characterized by a complex and rich morphology. The exceptional degree of ambiguity in the writing system, the rich morphology, and the highly complex word formation process of roots and patterns all contribute to making computational approaches to Arabic very challenging. As a result, a practical handwriting recognition system should support large vocabulary to pro...
متن کاملAlexU-Word: A New Dataset for Isolated-Word Closed-Vocabulary Offline Arabic Handwriting Recognition
In this paper, we introduce a new dataset for offline Arabic handwriting recognition. The aim is to collect a large dataset of isolated Arabic words that covers all letters of the alphabet in all possible shapes using a small number of simple words. The end goal is to obtain a very large database of segmented letter images, which can be used to build and evaluate Arabic handwriting recognition ...
متن کاملA neural-linguistic approach for the recognition of a wide Arabic word lexicon
Recently, we have investigated the use of Arabic linguistic knowledge to improve the recognition of wide Arabic word lexicon. A neural-linguistic approach was proposed to mainly deal with canonical vocabulary of decomposable words derived from tri-consonant healthy roots. The basic idea is to factorize words by their roots and schemes. In this direction, we conceived two neural networks TNN_R a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJPRAI
دوره 28 شماره
صفحات -
تاریخ انتشار 2014